Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 496
Filtrar
1.
ACS Appl Mater Interfaces ; 16(17): 21450-21462, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38649157

RESUMO

Osteoarthritis (OA) is a common joint disease characterized by progressive cartilage degeneration. Unfortunately, currently available clinical drugs are mainly analgesics and cannot alleviate the development of OA. Kartogenin (KGN) has been found to promote the differentiation of bone marrow mesenchymal stem cells (BMSCs) into chondrocytes for the treatment of cartilage damage in early OA. However, KGN, as a small hydrophobic molecule, is rapidly cleared from the synovial fluid after intra-articular injection. This study synthesized a KGN-loaded nanocarrier based on PLGA/polydopamine core/shell structure to treat OA. The fluorescence signal of KGN@PLGA/PDA-PEG-E7 nanoparticles lasted for 4 weeks, ensuring long-term sustained release of KGN from a single intra-articular injection. In addition, the polyphenolic structure of PDA enables it to effectively scavenge reactive oxygen species, and the BMSC-targeting peptide E7 (EPLQLKM) endows KGN@PLGA/PDA-PEG-E7 NPs with an effective affinity for BMSCs. As a result, the KGN@PLGA/PDA-PEG-E7 nanoparticles could effectively induce cartilage in vitro and protect the cartilage and subchondral bone in a rat ACLT model. This therapeutic strategy could also be extended to the delivery of other drugs, targeting other tissues to treat joint diseases.


Assuntos
Anilidas , Indóis , Células-Tronco Mesenquimais , Nanopartículas , Osteoartrite , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros , Ratos Sprague-Dawley , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Animais , Ratos , Injeções Intra-Articulares , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Nanopartículas/química , Polímeros/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Indóis/química , Indóis/farmacologia , Ácidos Ftálicos/química , Ácidos Ftálicos/farmacologia , Masculino , Portadores de Fármacos/química , Humanos
2.
J Orthop Surg Res ; 19(1): 240, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622736

RESUMO

OBJECTIVE: To assess the radiographic outcomes, clinical outcomes and complications of percutaneous kyphoplasty (PKP) with and without posterior pedicle screw fixation (PPSF) in the treatment of severe osteoporotic vertebral compression fractures (sOVCF) with nonunion. METHODS: This study involved 51 patients with sOVCF with nonunion who underwent PKP or PPSF + KP. The operation time, intraoperative blood loss, volume of injected bone cement, operation costs and hospital stays were all recorded. In addition, the Visual Analogue Scale (VAS) and the Oswestry Disability Index (ODI) were assessed separately for each patient before and after surgery. RESULTS: Compared with the PPSF + KP group, the PKP group had shorter operation time, less intraoperative blood loss, shorter hospital stays and fewer operation costs. However, cobb's angle improvement (13.4 ± 4.3° vs. 21.4 ± 5.3°), VWR improvement ratio (30.4 ± 11.5% vs. 52.8 ± 12.7%), HA (34.9 ± 9.0% vs. 63.7 ± 7.6%) and HM (28.4 ± 11.2% vs. 49.6 ± 7.7%) improvement ratio were all higher in PPSF + KP group than that in PKP group. In addition, the ODI index and VAS score in both groups were significantly decreased at the postoperative and final follow-up. PKP group's postoperative VAS score was significantly lower than that in PPSF + KP group, but there was no statistically significant difference in VAS score at the last follow-up. CONCLUSION: PKP and PPSF + KP can both effectively relieve the pain associated with sOVCF with nonunion. PPSF + KP can achieve more satisfactory vertebral reduction effects compared to PKP. However, PKP was less invasive and it has more advantages in shortening operation time and hospital stay, as well as decreasing intraoperative blood loss and operation costs.


Assuntos
Fraturas por Compressão , Cifoplastia , Fraturas por Osteoporose , Parafusos Pediculares , Fraturas da Coluna Vertebral , Humanos , Fraturas por Compressão/diagnóstico por imagem , Fraturas por Compressão/cirurgia , Fraturas por Compressão/tratamento farmacológico , Perda Sanguínea Cirúrgica , Fraturas da Coluna Vertebral/diagnóstico por imagem , Fraturas da Coluna Vertebral/cirurgia , Fraturas da Coluna Vertebral/tratamento farmacológico , Resultado do Tratamento , Fraturas por Osteoporose/diagnóstico por imagem , Fraturas por Osteoporose/cirurgia , Fraturas por Osteoporose/tratamento farmacológico , Cimentos Ósseos/uso terapêutico , Estudos Retrospectivos
3.
J Inflamm Res ; 17: 2245-2256, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38623469

RESUMO

Background: Dorsal root ganglia (DRGs) contain sensory neurons that innervate intervertebral discs (IVDs) and may play a critical role in mediating low-back pain (LBP), but the potential pathophysiological mechanism needs to be clarified. Methods: A discogenic LBP model in rats was established by penetration of a lumbar IVD. The severity of LBP was evaluated through behavioral analysis, and the gene and protein expression levels of pro-algesic peptide substance P (SP) and calcitonin gene-related peptide (CGRP) in DRGs were quantified. The level of reactive oxygen species (ROS) in bilateral lumbar DRGs was also quantified using dihydroethidium staining. Subsequently, hydrogen peroxide solution or N-acetyl-L-cysteine was injected into DRGs to evaluate the change in LBP, and gene and protein expression levels of transient receptor potential vanilloid-1 (TRPV1) in DRGs were analyzed. Finally, an inhibitor or activator of TRPV1 was injected into DRGs to observe the change in LBP. Results: The rats had remarkable LBP after disc puncture, manifesting as mechanical and cold allodynia and increased expression of the pro-algesic peptides SP and CGRP in DRGs. Furthermore, there was significant overexpression of ROS in bilateral lumbar DRGs, while manipulation of the level of ROS in DRGs attenuated or aggravated LBP in rats. In addition, excessive ROS in DRGs stimulated upregulation of TRPV1 in DRGs. Finally, activation or inhibition of TRPV1 in DRGs resulted in a significant increase or decrease of discogenic LBP, respectively, suggesting that ROS-induced TRPV1 has a strong correlation with discogenic LBP. Conclusion: Increased ROS in DRGs play a primary pathological role in puncture-induced discogenic LBP, and excessive ROS-induced upregulation of TRPV1 in DRGs may be the underlying pathophysiological mechanism to cause nerve sensitization and discogenic LBP. Therapeutic targeting of ROS or TRPV1 in DRGs may provide a promising method for the treatment of discogenic LBP.

4.
Clin Transl Med ; 14(4): e1658, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38659080

RESUMO

BACKGROUND: Chordoma, a rare bone tumour with aggressive local invasion and high recurrence rate with limited understanding of its molecular mechanisms. Circular RNAs (circRNAs) have been extensively implicated in tumorigenesis, yet their involvement in chordoma remains largely unexplored. N6-methyladenosine (m6A) modification holds a crucial function in regulating protein translation, RNA degradation and transcription. METHODS: Initially, screening and validation of circTEAD1 in chordoma were conducted by high-throughput sequencing. Subsequently, sh-circTEAD1 and an overexpression plasmid were constructed. Colony formation assays, cell counting kit-8, Transwell and wound healing assays were utilized to validate the function of circTEAD1 in vitro. RNA pull-down assays identified the binding proteins of circTEAD1, which underwent verification through RNA immunoprecipitation (RIP). Methylated RIP assays were conducted to detect the m6A binding sites. Following this, luciferase assay, RT-qPCR, RIP and Western blotting analyses were conducted, revealing that Yap1 was the direct target of circTEAD1. Afterwards, the same methods were utilized for the validation of the function of Yap1 in chordoma in vitro. Finally, the regulatory relationship between circTEAD1 and Yap1 in chordoma was verified by an in vivo tumour formation assay. RESULTS: CircTEAD1 was identified as an upregulated circRNA in chordoma specimens, with heightened circTEAD1 expression emerging as a prognostic indicator. In vitro experiments convincingly demonstrated that circTEAD1 significantly promoted chordoma cell invasion, migration and aggressiveness. Furthermore, the analysis revealed that methyltransferase-like 3-mediated m6A modification facilitated the cytoplasmic export of circTEAD1. The circTEAD1/IGF2BP3/Yap1 mRNA RNA-protein ternary complex not only bolstered the stability of Yap1 mRNA but also exerted a pivotal role in driving chordoma tumorigenesis. CONCLUSIONS: In this study, the role of m6A-modified circTEAD1 in chordoma was identified. The findings offer novel insights into the potential molecular targets for chordoma therapy, shedding light on the intricate interplay between circRNAs, m6A modification and Yap1 mRNA in chordoma pathogenesis.


Assuntos
Adenosina , Adenosina/análogos & derivados , Cordoma , RNA Circular , Fatores de Transcrição , Proteínas de Sinalização YAP , Humanos , Adenosina/metabolismo , Adenosina/genética , RNA Circular/genética , RNA Circular/metabolismo , Proteínas de Sinalização YAP/genética , Proteínas de Sinalização YAP/metabolismo , Cordoma/genética , Cordoma/patologia , Cordoma/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Carcinogênese/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral
5.
Int J Surg Case Rep ; 118: 109636, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38643655

RESUMO

INTRODUCTION AND IMPORTANCE: To report the sequential treatment of a Type II odontoid fracture combined with a severe lower cervical (C6-7) fracture-dislocation featuring bilateral facet joint interlocking. CASE PRESENTATION: A 58-year-old male who had suffered an injury in a car accident, He presented neck pain and extremity paralysis. His neurological function was classified as per the American Spinal Injury Association (ASIA) impairment scale as Grade A, indicating complete deficits below the C6 spinal cord level. A cervical CT scan and magnetic resonance image showed a type II odontoid fracture, C6 slipped anteriorly, C6-7 bilateral facet joint fracture and interlocking, slightly compression change of C7 upper endplate. CLINICAL DISCUSSION: Emergency closed reduction using cranial tong traction was success 6 h after the injury. A subsequent CT scan proved the successful reduction of bilateral facet joint dislocations and the odontoid fracture. After careful overall assessment, anterior cervical decompression and fusion (ACDF) was performed at C5-6 and C6-7 segments three days later,while odontoid fracture was treated conservatively. At the 4 months follow-up, a CT scan demonstrated solid bone fusion at C5-6, C6-7 segments, along with successful healing at the odontoid fracture site. However, spinal cord was necrosis at C5-7 segments, and the patient's neurological function had no improvement. CONCLUSION: The initial closed reduction could restore the alignment and preliminary stability of cervical spine at sub-axial cervical fracture-dislocation segment as well as displaced odontoid fracture. This timely and effective closed reduction significantly diminished sequential surgical trauma and mitigated associated risks.

6.
Cell Commun Signal ; 22(1): 160, 2024 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-38439009

RESUMO

BACKGROUND: Estrogen deficiency-mediated hyperactive osteoclast represents the leading role during the onset of postmenopausal osteoporosis. The activation of a series of signaling cascades triggered by RANKL-RANK interaction is crucial mechanism underlying osteoclastogenesis. Vorinostat (SAHA) is a broad-spectrum pan-histone deacetylase inhibitor (HDACi) and its effect on osteoporosis remains elusive. METHODS: The effects of SAHA on osteoclast maturation and bone resorptive activity were evaluated using in vitro osteoclastogenesis assay. To investigate the effect of SAHA on the osteoclast gene networks during osteoclast differentiation, we performed high-throughput transcriptome sequencing. Molecular docking and the assessment of RANKL-induced signaling cascades were conducted to confirm the underlying regulatory mechanism of SAHA on the action of RANKL-activated osteoclasts. Finally, we took advantage of a mouse model of estrogen-deficient osteoporosis to explore the clinical potential of SAHA. RESULTS: We showed here that SAHA suppressed RANKL-induced osteoclast differentiation concentration-dependently and disrupted osteoclastic bone resorption in vitro. Mechanistically, SAHA specifically bound to the predicted binding site of RANKL and blunt the interaction between RANKL and RANK. Then, by interfering with downstream NF-κB and MAPK signaling pathway activation, SAHA negatively regulated the activity of NFATc1, thus resulting in a significant reduction of osteoclast-specific gene transcripts and functional osteoclast-related protein expression. Moreover, we found a significant anti-osteoporotic role of SAHA in ovariectomized mice, which was probably realized through the inhibition of osteoclast formation and hyperactivation. CONCLUSION: These data reveal a high affinity between SAHA and RANKL, which results in blockade of RANKL-RANK interaction and thereby interferes with RANKL-induced signaling cascades and osteoclastic bone resorption, supporting a novel strategy for SAHA application as a promising therapeutic agent for osteoporosis.


Assuntos
Reabsorção Óssea , Osteoporose , Feminino , Animais , Camundongos , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Vorinostat/farmacologia , Vorinostat/uso terapêutico , Simulação de Acoplamento Molecular , Reabsorção Óssea/tratamento farmacológico , Transdução de Sinais , Osteoporose/tratamento farmacológico , Osteoporose/etiologia , Estrogênios
7.
Biomaterials ; 306: 122475, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38306733

RESUMO

Although tumor-infiltrating T lymphocytes (TIL-Ts) play a crucial role in solid tumor immunotherapy, their clinical application has been limited because of the immunosuppressive microenvironment. Herein, we developed an injectable hydrogel microsphere-integrated training court (MS-ITC) to inspire the function of TIL-Ts and amplify TIL-Ts, through grafting with anti-CD3 and anti-CD28 antibodies and bovine serum albumin nanoparticles encapsulated with IL-7 and IL-15. MS-ITC provided the T-cell receptor and co-stimulatory signals required for TIL-Ts activation and IL-7/IL-15 signals for TIL-Ts expansion. Afterward, the MS-ITC was injected locally into the osteosarcoma tumor tissue in mice. MS-ITC suppressed the growth of primary osteosarcoma by more than 95 %, accompanied with primed and expanded TIL-Ts in the tumor tissues, compromising significantly increased CD8+ T and memory T cells, thereby enhancing the anti-tumor effect. Together, this work provides an injectable hydrogel microsphere-integrated training platform capable of inspiring TIL-Ts potential for a range of solid tumor immunotherapy.


Assuntos
Interleucina-15 , Neoplasias , Animais , Camundongos , Hidrogéis , Interleucina-7 , Microesferas , Citotoxicidade Imunológica , Linfócitos do Interstício Tumoral , Linfócitos T , Interleucina-2/farmacologia , Ativação Linfocitária , Microambiente Tumoral
8.
Anim Biotechnol ; 35(1): 2314100, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38343377

RESUMO

Matrix metalloproteinase 9 (MMP9) plays a pivotal role in mammary ductal morphogenesis, angiogenesis and glandular tissue architecture remodeling. However, the molecular mechanism of MMP9 expression in mammary epithelial cells of dairy cows remains unclear. This study aimed to explore the underlying mechanism of MMP9 expression. In this study, to determine whether the PI3K/AKT/mTORC1/NF-κB signalling pathway participates in the regulation of MMP9 expression, we treated mammary epithelial cells with specific pharmacological inhibitors of PI3K (LY294002), mTORC1 (Rapamycin) or NF-κB (Celastrol), respectively. Western blotting results indicated that LY294002, Rapamycin and Celastrol markedly decreased MMP9 expression and P65 nuclear translocation. Furthermore, we found that NF-κB (P65) overexpression resulted in elevated expression of MMP9 protein and activation of MMP9 promoter. In addition, we observed that Celastrol markedly decreases P65-overexpression-induced MMP9 promoter activity. Moreover, the results of the promoter assay indicated that the core regulation sequence for MMP9 promoter activation may be located at -420 ∼ -80 bp downstream from the transcription start site. These observations indicated that the PI3K/AKT/mTORC1 signalling pathway is involved in MMP9 expression by regulating MMP9 promoter activity via NF-κB in the mammary epithelial cells of dairy cows.


Assuntos
NF-kappa B , Triterpenos Pentacíclicos , Proteínas Proto-Oncogênicas c-akt , Feminino , Bovinos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Ativação Transcricional , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Células Epiteliais/metabolismo , Sirolimo/metabolismo , Sirolimo/farmacologia
9.
Regen Biomater ; 11: rbad096, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38173773

RESUMO

The scarcity of native periosteum poses a significant clinical barrier in the repair of critical-sized bone defects. The challenge of enhancing regenerative potential in bone healing is further compounded by oxidative stress at the fracture site. However, the introduction of artificial periosteum has demonstrated its ability to promote bone regeneration through the provision of appropriate mechanical support and controlled release of pro-osteogenic factors. In this study, a poly (l-lactic acid) (PLLA)/hyaluronic acid (HA)-based nanofibrous membrane was fabricated using the coaxial electrospinning technique. The incorporation of irisin into the core-shell structure of PLLA/HA nanofibers (PLLA/HA@Irisin) achieved its sustained release. In vitro experiments demonstrated that the PLLA/HA@Irisin membranes exhibited favorable biocompatibility. The osteogenic differentiation of bone marrow mesenchymal stem cells (BMMSCs) was improved by PLLA/HA@Irisin, as evidenced by a significant increase in alkaline phosphatase activity and matrix mineralization. Mechanistically, PLLA/HA@Irisin significantly enhanced the mitochondrial function of BMMSCs via the activation of the sirtuin 3 antioxidant pathway. To assess the therapeutic effectiveness, PLLA/HA@Irisin membranes were implanted in situ into critical-sized calvarial defects in rats. The results at 4 and 8 weeks post-surgery indicated that the implantation of PLLA/HA@Irisin exhibited superior efficacy in promoting vascularized bone formation, as demonstrated by the enhancement of bone matrix synthesis and the development of new blood vessels. The results of our study indicate that the electrospun PLLA/HA@Irisin nanofibers possess characteristics of a biomimetic periosteum, showing potential for effectively treating critical-sized bone defects by improving the mitochondrial function and maintaining redox homeostasis of BMMSCs.

10.
Sci Rep ; 13(1): 23109, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172628

RESUMO

To evaluate the diagnostic accuracy of a new modified MR dual precision positioning of thin-slice oblique sagittal fat suppression proton density-weighted imaging (DPP-TSO-Sag-FS-PDWI) sequence in detecting ACL injuries and its grades compared to standard sequences using arthroscopy as the standard reference. 42 patients enrolled in this retrospective study received the 1.5-T MRI with standard sequences and the new modified DPP-TSO-Sag-FS-PDWI sequence, and their arthroscopy results was recorded. The Mc Nemer-Bowker and weighted Kappa was performed to compare the consistency of MRI diagnosis with arthroscopic results. Finally, the diagnostic accuracy was calculated based on the true positive, true negative, false negative and false positive values. The diagnostic consistency of the DPP-TSO-Sag-FS-PDWI were higher than standard sequences for both reader 1 (K = 0.876 vs. 0.620) and reader 2 (K = 0.833 vs. 0.683) with good diagnostic repeatability (K = 0.794 vs. 0.598). Furthermore, the DPP-TSO-Sag-FS-PDWI can classify and diagnose three grades of ACL injury [the sensitivity, specificity, accuracy, positive predictive value (PPV) and negative predictive value were more than 84%], especially for grade II injury as the PPV was superior for reader 1 (92.3% vs. 53.9%) and reader 2 (84.6% vs. 69.2%). The new modified DPP-TSO-Sag-FS-PDWI sequence can display the ACL injury on one or continuous levels by maximizing the acquisition of complete ligament shape and true anatomical images, and excluding the influence of anatomical differences between individuals. It can improve the diagnostic accuracy with good repeatability and classify three grades of the ACL injury.


Assuntos
Lesões do Ligamento Cruzado Anterior , Traumatismos do Joelho , Humanos , Lesões do Ligamento Cruzado Anterior/diagnóstico por imagem , Ligamento Cruzado Anterior/diagnóstico por imagem , Prótons , Traumatismos do Joelho/diagnóstico , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Artroscopia , Sensibilidade e Especificidade
11.
Cell Death Dis ; 15(1): 57, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38228583

RESUMO

Osteosarcoma (OS) is a highly aggressive form of bone cancer that predominantly affects adolescents and young adults. In this study, we have undertaken an investigation into the potential anti-OS cell activity of IMT1 (inhibitor of mitochondrial transcription 1), a first-in-class inhibitor of RNA polymerase mitochondrial (POLRMT). IMT1 exhibited a profound inhibitory effect on cell survival, proliferation, cell cycle progression, and migration in primary and immortalized OS cells. Furthermore, this POLRMT inhibitor elicited apoptosis in the OS cells, without, however, inducing cytotoxicity in human osteoblasts or osteoblastic cells. IMT1 disrupted mitochondrial functions in OS cells, resulting in mitochondrial depolarization, oxidative injury, lipid peroxidation, and ATP reduction in OS cells. Silencing POLRMT using targeted shRNA closely mimicked the actions of IMT1 and exerted potent anti-OS cell activity. Importantly, IMT1's effectiveness was diminished in POLRMT-silenced OS cells. Subsequent investigations revealed that IMT1 suppressed the activation of the Akt-mammalian target of rapamycin (mTOR) cascade in OS cells. IMT1 treatment or POLRMT silencing in primary OS cells led to a significant reduction in Akt1-S6K-S6 phosphorylation. Conversely, it was enhanced upon POLRMT overexpression. The restoration of Akt-mTOR activation through the introduction of a constitutively active S473D mutant Akt1 (caAkt1) mitigated IMT1-induced cytotoxicity in OS cells. In vivo, oral administration of IMT1 robustly curtailed the growth of OS xenografts in nude mice. Furthermore, IMT1 suppressed POLRMT activity, impaired mitochondrial function, repressed Akt-mTOR activation, and induced apoptosis within xenograft tissues. Collectively, these findings underscore the potent growth-inhibitory effects attributed to IMT1 via targeted POLRMT inhibition. The utilization of this POLRMT inhibitor carries substantial therapeutic promise in the context of OS treatment.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Animais , Camundongos , Adolescente , Adulto Jovem , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Serina-Treonina Quinases TOR/metabolismo , Osteossarcoma/genética , Sirolimo/farmacologia , Apoptose , Neoplasias Ósseas/tratamento farmacológico , Neoplasias Ósseas/metabolismo , Proliferação de Células , Mitocôndrias/metabolismo , Mamíferos , RNA Polimerases Dirigidas por DNA
12.
J Pineal Res ; 76(1): e12924, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37941528

RESUMO

Osteoporotic bone defects, a severe complication of osteoporosis, are distinguished by a delayed bone healing process and poor repair quality. While bone marrow-derived mesenchymal stem cells (BMMSCs) are the primary origin of bone-forming osteoblasts, their mitochondrial function is impaired, leading to inadequate bone regeneration in osteoporotic patients. Melatonin is well-known for its antioxidant properties and regulation on bone metabolism. The present study postulated that melatonin has the potential to enhance the repair of osteoporotic bone defects by restoring the mitochondrial function of BMMSCs. In vitro administration of melatonin at varying concentrations (0.01, 1, and 100 µM) demonstrated a significant dose-dependent improvement in the mitochondrial function of BMMSCs obtained from ovariectomized rats (OVX-BMMSCs), as indicated by an elevation in mitochondrial membrane potential, adenosine triphosphate synthesis and expression of mitochondrial respiratory chain factors. Melatonin reduced the level of mitochondrial superoxide by activating the silent information regulator type 1 (SIRT1) and its downstream antioxidant enzymes, particularly superoxide dismutase 2 (SOD2). The protective effects of melatonin were found to be nullified upon silencing of Sirt1 or Sod2, underscoring the crucial role of the SIRT1-SOD2 axis in the melatonin-induced enhancement of mitochondrial energy metabolism in OVX-BMMSCs. To achieve a sustained and localized release of melatonin, silk fibroin scaffolds loaded with melatonin (SF@MT) were fabricated. The study involved the surgical creation of bilateral femur defects in OVX rats, followed by the implantation of SF@MT scaffolds. The results indicated that the application of melatonin partially restored the mitochondrial energy metabolism and osteogenic differentiation of OVX-BMMSCs by reinstating mitochondrial redox homeostasis. These findings suggest that the localized administration of melatonin through bone implants holds potential as a therapeutic approach for addressing osteoporotic bone defects.


Assuntos
Melatonina , Células-Tronco Mesenquimais , Osteoporose , Humanos , Ratos , Animais , Osteogênese , Melatonina/metabolismo , Sirtuína 1/metabolismo , Antioxidantes/uso terapêutico , Medula Óssea/metabolismo , Osteoporose/tratamento farmacológico , Diferenciação Celular , Mitocôndrias/metabolismo , Células Cultivadas
13.
Free Radic Biol Med ; 210: 146-157, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38008130

RESUMO

Volumetric muscle loss (VML) is a condition that results in the extensive loss of 20 % or more of skeletal muscle due to trauma or tumor ablation, leading to severe functional impairment and permanent disability. The current surgical interventions have limited functional regeneration of skeletal muscle due to the compromised self-repair mechanism. Melatonin has been reported to protect skeletal muscle from exercise-induced oxidative damage and holds great potential to treat muscle diseases. In this study, we hypothesize that melatonin can enhance myoblast differentiation and promote effective recovery of skeletal muscle following VML. In vitro administration of melatonin resulted in a significant enhancement of myogenesis in C2C12 myoblast cells, as evidenced by the up-regulation of myogenic marker genes in a dose-dependent manner. Further experiments revealed that silent information of regulator type 3 (SIRT3) played a critical role in the melatonin-enhanced myoblast differentiation through enhancement of mitochondrial energy metabolism and activation of mitochondrial antioxidant enzymes such as superoxide dismutase 2 (SOD2). Silencing of Sirt3 completely abrogated the protective effect of melatonin on the mitochondrial function of myoblasts, evidenced by the increased reactive oxygen species, decreased adenosine triphosphate production, and down-regulated myoblast-specific marker gene expression. In order to attain a protracted and consistent release, liposome-encapsuled melatonin was integrated into gelatin methacryloyl hydrogel (GelMA-Lipo@MT). The implantation of GelMA-Lipo@MT into a tibialis anterior muscle defect in a VML model effectively stimulated the formation of myofibers and new blood vessels in situ, while concurrently inhibiting fibrotic collagen deposition. The findings of this study indicate that the incorporation of melatonin with GelMA hydrogel has facilitated the de novo vascularized skeletal muscle regeneration by augmenting mitochondrial energy metabolism. This represents a promising approach for the development of skeletal muscle tissue engineering, which could be utilized for the treatment of VML and other severe muscle injuries.


Assuntos
Melatonina , Sirtuína 3 , Melatonina/farmacologia , Sirtuína 3/genética , Músculo Esquelético/patologia , Mitocôndrias , Metabolismo Energético , Hidrogéis
14.
Postgrad Med J ; 100(1181): 187-195, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37978228

RESUMO

PURPOSE: Basal metabolic rate (BMR) as one of the most basic and significant indicators of metabolism has been associated with human health. Previous studies showed that the development of rheumatoid arthritis (RA) is linked to BMR; however, the causal relationship between BMR and RA is unknown. Thus, we aimed to explore the causal relationship between BMR and RA as well as RA-related factors. METHODS: Mendelian randomization (MR) analysis was performed on collected genome-wide association studies information. The effect of horizontal pleiotropy was detected by MR-PRESSO and MR-Radial. Five MR analysis methods were applied, including inverse variance weighted, MR-Egger, weighted median, weighted mode, and simple mode. Four sensitivity analysis methods were used for the validation of the significant MR analysis results. A two-component mixture of regressions method was additionally used to validate single nucleotide polymorphisms and to verify results. RESULTS: Genetically, there is a causal effect of BMR on overall RA (odds ratio = 1.25, 95% confidence interval: 1.07-1.47, PIVW = .006), seropositive RA (odds ratio = 1.20, 95% confidence interval: 1.01-1.44, PIVW = .035), and seronegative RA (odds ratio = 1.36, 95% confidence interval: 1.04-1.78, PIVW = .023). Sensitivity analyses validated the robustness of the above associations. No evidence supported the effect of RA on BMR. Moreover, BMR showed no causal relationship with rheumatoid factor, C-reactive protein, erythrocyte sedimentation rate, interleukin-1ß, tumor necrosis factor-α, and matrix metallopeptidase 3. CONCLUSION: MR results implied the causal effect of BMR on RA and raised our attention to the importance of BMR in RA's pathology.


Assuntos
Artrite Reumatoide , Metabolismo Basal , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Artrite Reumatoide/genética , Proteína C-Reativa , Polimorfismo de Nucleotídeo Único
15.
Elife ; 122023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37929702

RESUMO

Rheumatoid arthritis (RA) is characterized by joint synovitis and bone destruction, the etiology of which remains to be explored. Many types of cells are involved in the progression of RA joint inflammation, among which the overactivation of M1 macrophages and osteoclasts has been thought to be an essential cause of joint inflammation and bone destruction. Glioma-associated oncogene homolog 1 (GLI1) has been revealed to be closely linked to bone metabolism. In this study, GLI1 expression in the synovial tissue of RA patients was positively correlated with RA-related scores and was highly expressed in collagen-induced arthritis (CIA) mouse articular macrophage-like cells. The decreased expression and inhibition of nuclear transfer of GLI1 downregulated macrophage M1 polarization and osteoclast activation, the effect of which was achieved by modulation of DNA methyltransferases (DNMTs) via transcriptional regulation and protein interactions. By pharmacological inhibition of GLI1, the proportion of proinflammatory macrophages and the number of osteoclasts were significantly reduced, and the joint inflammatory response and bone destruction in CIA mice were alleviated. This study clarified the mechanism of GLI1 in macrophage phenotypic changes and activation of osteoclasts, suggesting potential applications of GLI1 inhibitors in the clinical treatment of RA.


Assuntos
Artrite Experimental , Artrite Reumatoide , Osteólise , Proteína GLI1 em Dedos de Zinco , Animais , Humanos , Camundongos , Artrite Experimental/metabolismo , Artrite Reumatoide/metabolismo , DNA/metabolismo , Inflamação/metabolismo , Metiltransferases/metabolismo , Osteoclastos/metabolismo , Osteólise/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
16.
Front Immunol ; 14: 1240149, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869011

RESUMO

Background: Radiofrequency ablation (RFA) and chemotherapy are used to treat lung cancer or pulmonary metastases, but no direct comparison of overall survival (OS) has been published. The present study aimed to assess the OS of RFA and/or chemotherapy in patients with lung cancer or pulmonary metastases who were not candidates for surgical resection. Methods: To identify relevant studies, the following databases were electronically searched from their inception to 31 March 2023: PubMed, Embase, Web of Science, Cochrane Library, Scopus, Ovid, ScienceDirect, SinoMed, China National Knowledge Infrastructure Database, Chongqing VIP Chinese Science and Technology Periodical Database, Wanfang Database, LILACS, ClinicalTrials.gov, and Chictr.org. Manual retrieval was also conducted. We used published hazard ratios (HRs) if available or estimates from other survival data. Results: A total of 1,387 participants from 14 trials were included in the final analysis. Patients treated with RFA combined with chemotherapy significantly improved OS compared with those treated with chemotherapy alone [HR 0.50, 95% confidence interval (CI) 0.41-0.61; p < 0.00001], with an absolute difference at 12 months of 29.6% (95% CI 23.7-35.5), at 24 months of 19.2% (95% CI 10.1-28.2), and at 36 months of 22.9% (95% CI 12.0-33.7). No statistically significant difference was observed in the subgroups of case type, cancer type, chemotherapy drugs, and tumor size. The HR for OS with RFA plus chemotherapy vs. RFA alone was 0.53 (95% CI 0.41-0.70; p < 0.00001), corresponding to a 27.1% (95% CI 18.3-35.8), 31.0% (95% CI 19.9-41.9), and 24.9% (95% CI 15.0-34.7) absolute difference in survival at 12 months, 24 months, and 36 months, respectively. Subgroup analysis by geographic region and TNM stage showed that RFA combined with chemotherapy still significantly improved OS compared to RFA. The HR of RFA vs. chemotherapy was 0.98 (95% CI 0.60-1.60; p = 0.94), with an absolute difference at 12 months of 1.4% (95% CI -19.2 to 22.1), at 24 months of 7.8% (95% CI -11.3 to 26.8), and at 36 months of 0.3% (95% CI -13.2 to 13.8). The overall indirect comparison of OS for RFA vs. chemotherapy was 0.95 (95% CI 0.72-1.26; p = 0.74). Data on progression-free survival were not sufficiently reported. Conclusion: RFA combined with chemotherapy might be a better treatment option for patients with lung cancer or pulmonary metastases than chemotherapy alone or RFA alone. The comparison between RFA and/or chemotherapy remains to be specifically tested. Systematic review registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=335032, identifier CRD42022335032.


Assuntos
Ablação por Cateter , Neoplasias Pulmonares , Ablação por Radiofrequência , Humanos , Resultado do Tratamento , Neoplasias Pulmonares/etiologia , Modelos de Riscos Proporcionais
17.
Mater Today Bio ; 23: 100811, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37810753

RESUMO

Intervertebral disc (IVD) herniation is a major cause of chronic low back pain and disability. The current nucleus pulposus (NP) discectomy effectively relieves pain symptoms, but the annulus fibrosus (AF) defects are left unrepaired. Tissue engineering approaches show promise in treating AF injury and IVD degeneration; however, the presence of an inflammatory milieu at the injury site hinders the mitochondrial energy metabolism of AF cells, resulting in a lack of AF regeneration. In this study, we fabricated a dynamic self-healing hydrogel loaded with melatonin (an endocrine hormone well-known for its antioxidant and anti-inflammatory properties) and investigate whether melatonin-loaded hydrogel could promote AF defect repair by rescuing the matrix synthesis and energy metabolism of AF cells. The protective effects of melatonin on matrix components (e.g. type I and II collagen and aggrecan) in AF cells were observed in the presence of interleukin (IL)-1ß. Additionally, melatonin was found to activate the nuclear factor erythroid 2-related factor signaling pathway, thereby safeguarding the mitochondrial function of AF cells from IL-1ß, as evidenced by the increased level of adenosine triphosphate, mitochondrial membrane potential, and respiratory chain factor expression. The incorporation of melatonin into a self-healing hydrogel based on thiolated gelatin and ß-cyclodextrin was proposed as a means of promoting AF regeneration. The successful implantation of melatonin-loaded hydrogel has been shown to facilitate in situ regeneration of AF tissue, thereby impeding IVD degeneration by preserving the hydration of nucleus pulposus in a rat box-cut IVD defect model. These findings offer compelling evidence that the development of a melatonin-loaded dynamic self-healing hydrogel can promote the mitochondrial functions of AF cells and represents a promising strategy for IVD regeneration.

18.
Environ Sci Technol ; 57(40): 14917-14928, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37751292

RESUMO

The combined exposure of multiple metals imposes a substantial burden on the ecophysiological functions in organisms; however, the precise mechanism(s) remains largely unknown. Here, adult female A. ventricosus were exposed to single and combined exposure to cadmium (Cd) and lead (Pb) through the food chain. The aim was to explore the combined toxicity of these metals on silk production and web-weaving behavior at physiological, cellular morphological, and transcriptomic levels. The Cd and Pb combined exposure significantly inhibited the ability of silk production and web-weaving, including reduced silk fiber weight and diameter of single strands, lowered weaving position, induced nocturnal weaving, and increased instances of no-web, and showed a dose-response relationship on the Cd and Pb bioaccumulation. Concurrently, severe oxidative stress and degenerative changes in cells were observed. In addition, the combined pollution of Cd and Pb demonstrated synergistic effects, influenced by variations in concentration, on the enrichment of metals, inhibition of silk weight, oxidative damage, and cellular degeneration. At the transcriptome level, the upregulated ampullate spidroin genes and downregulated amino acid anabolic genes, upregulated Far genes and downregulated cytoskeleton-related TUBA genes, and overexpressed AChE and Glu genes may tend to present promising potential as biomarkers for silk protein synthesis, cellular degeneration, and neurotransmitter induction. This study offers an enormous capability for a comprehensive understanding of the eco-toxicological effects and mechanisms of multiheavy metals pollution.

20.
Cell Death Dis ; 14(9): 631, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749079

RESUMO

Osteoporosis is not well treated due to the difficulty of finding commonalities between the various types of it. Iron homeostasis is a vital component in supporting biochemical functions, and iron overload is recognized as a common risk factor for osteoporosis. In this research, we found that there is indeed evidence of iron accumulation in the bone tissue of patients with osteoporosis and REPIN1, as an origin specific DNA binding protein, may play a key role in this process. We revealed that sh-Repin1 therapy can rescue bone loss in an iron-overload-induced osteoporosis mouse model. Knockdown of Repin1 can inhibit apoptosis and enhance the resistance of osteoblasts to iron overload toxicity. REPIN1 promoted apoptosis by regulating iron metabolism in osteoblasts. Mechanistically, knockdown of Repin1 decreased the expression of Lcn2, which ameliorated the toxic effects of intracellular iron overload. The anti-iron effect of lentivirus sh-Repin1 was partially reversed or replicated by changing LCN2 expression level via si-RNA or plasmid, which indirectly verified the key regulatory role of LCN2 as a downstream target. Furthermore, the levels of BCL2 and BAX, which play a key role in the mitochondrial apoptosis pathway, were affected. In summary, based on the results of clinical specimens, animal models and in vitro experiments, for the first time, we proved the key role of REPIN1 in iron metabolism-related osteoporosis.


Assuntos
Proteínas de Ligação a DNA , Sobrecarga de Ferro , Osteoporose , Animais , Humanos , Camundongos , Apoptose , Modelos Animais de Doenças , Proteínas de Ligação a DNA/genética , Ferro , Sobrecarga de Ferro/genética , Osteoblastos , Osteoporose/genética , Proteínas de Ligação a RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA